MSR 2024
Mon 15 - Tue 16 April 2024 Lisbon, Portugal
co-located with ICSE 2024

The increasing adoption of microservices in software development requires effective recommendation systems that guide developers to relevant microservices. In this paper, we introduce MicroRec, a novel microservice recommender framework which leveraging insights from Stack Overflow posts and the power of Large Language Models (LLMs). MicroRec utilizes a dual-encoder architecture that combines contrastive learning and semantic similarity learning, allowing us to achieve robust and accurate retrieval and ranking of relevant posts based on user queries. Using LLMs, MicroRec builds up a deep understanding of both user queries and microservices through the information they provides (e.g., README files and Dockerfiles). Our empirical evaluations demonstrate significant improvements brought by MicroRec over the existing methods across a variety of performance metrics including MRR, MAP, and precision@k. In addition, the results returned by MicroRec were fourteen times more accurate than those provided by the existing recommendation tool on the widely-used Docker Hub platform.

Mon 15 Apr

Displayed time zone: Lisbon change

16:00 - 17:30
Machine learning for Software EngineeringTechnical Papers at Grande Auditório
Chair(s): Diego Costa Concordia University, Canada
16:00
12m
Talk
Whodunit: Classifying Code as Human Authored or GPT-4 Generated - A case study on CodeChef problems
Technical Papers
Oseremen Joy Idialu University of Waterloo, Noble Saji Mathews University of Waterloo, Canada, Rungroj Maipradit University of Waterloo, Joanne M. Atlee University of Waterloo, Mei Nagappan University of Waterloo
DOI Pre-print
16:12
12m
Talk
GIRT-Model: Automated Generation of Issue Report Templates
Technical Papers
Nafiseh Nikehgbal Sharif University of Technology, Amir Hossein Kargaran LMU Munich, Abbas Heydarnoori Bowling Green State University
DOI Pre-print
16:24
12m
Talk
MicroRec: Leveraging Large Language Models for Microservice Recommendation
Technical Papers
Ahmed Saeed Alsayed University of Wollongong, Hoa Khanh Dam University of Wollongong, Chau Nguyen University of Wollongong
16:36
12m
Talk
PeaTMOSS: A Dataset and Initial Analysis of Pre-Trained Models in Open-Source Software
Technical Papers
Wenxin Jiang Purdue University, Jerin Yasmin Queen's University, Canada, Jason Jones Purdue University, Nicholas Synovic Loyola University Chicago, Jiashen Kuo Purdue University, Nathaniel Bielanski Purdue University, Yuan Tian Queen's University, Kingston, Ontario, George K. Thiruvathukal Loyola University Chicago and Argonne National Laboratory, James C. Davis Purdue University
DOI Pre-print
16:48
12m
Talk
Data Augmentation for Supervised Code Translation Learning
Technical Papers
Binger Chen Technische Universität Berlin, Jacek golebiowski Amazon AWS, Ziawasch Abedjan Leibniz Universität Hannover
17:00
12m
Talk
On the Effectiveness of Machine Learning-based Call-Graph Pruning: An Empirical Study
Technical Papers
Amir Mir Delft University of Technology, Mehdi Keshani Delft University of Technology, Sebastian Proksch Delft University of Technology
Pre-print
17:12
12m
Talk
Leveraging GPT-like LLMs to Automate Issue Labeling
Technical Papers
Giuseppe Colavito University of Bari, Italy, Filippo Lanubile University of Bari, Nicole Novielli University of Bari, Luigi Quaranta University of Bari, Italy
Pre-print